The result of computing the values of the temperature at the points Mi(S) of the i-th
ray with coordinates r ) = di + 0.1s, s =1, 2, ¢ee, O = ih is presented in Table 1.

The data in Table 1 'yield a representation of the temperature distribution in the in-
ternal points of the plate area.. They are obtained upon partitioning the interval (0, w/4)
into eight parts (i = 0, 1, ...; 8) with a division spacing of h = /32,

NOTATION

Ly, L2, plate contours; r, O, dimensionless polar coordinates, ry, €y, My, Ay, .V = 1, 2,
contour parameters; h(r, ©), plate thickness; H, P, given functioms; Ty, v = 1, 2, value of
the temperature on the L;, contour; T, function of the temperature; A, heat-conduction coef-
ficient: T, K}rchhoff'variable;i, ¥, known_functions; a, parameter playing the part of the
eigennumber; O, period of the solution of the problem; n, number parts into which the interval
is divided; h, division spacing; 04, point of division; Yj, an approximate value of the func-
tion y(0) at the division point; p, parameter; F(0{) known function; Uk, roots of the char-
acteristic equation; f£i(k), 9,(K)  ¢2(k)  functions of the radius r; Cj(k), D4 (k), constants
of integration; ti, a function of the radius r at the i-th ray; Xk, Zk, parameters determined
from the boundary conditions of the problem; Mi(s), a point of the i-th ray; and ri(s), 01,
coordinates of a point on the i-th ray.
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APPROXIMATE ANALYTICAL SOLUTION OF LINEAR HEAT-CONDUCTION PROBLEMS
IN REGIONS WITH NONCANONICAL BOUNDARIES

I. V. Baryshnikov and V. A. Datskovskii UDC 536.24,02

We present a method for solving linear heat-conduction problems in regions bounded
by a noncanonical contour. The method is based on extending the noncanonical con-
tour to a contour imbedded in the grid of classical coordinate systems,

The use of various modifications of the method of partial regions (see, for example, [1])
broadens the possibility of analytically solving heat=-conduction problems, The main ingredi-
ent in the application of these methods is the requirement of a canonical contour bounding
the computational region (it must be formed by the intersection of orthogonal coordinate sur-
faces of classical coordinate systems [2]).

In the present paper we offer an approximate analytical solution of linear heat~conduc-
tion problems in regions bounded by a noncanonical contour.

In connection with fields described by the Laplace equation, our method for the soclution
of a problem can be represented as follows: 1) a contour of complex profile bounding the com-
putational region is extended to a contour of canonical form; 2) on the extended part of the
contour a boundary condition of the second kind

2 9L

= q(s),

IS

is introduced, where q(s) is an unknown thermal flow distribution function on the "extended"
boundary s; 3) the function q(s) may be replaced by a piecewise-constant representation
gqi» i= 1,2,...,M; 4) a solution of a field problem constructed by one of the analytical
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, Fig. 1. Shape of the computational region:
B line 1 is a boundary of the initial region;
¢ line 2 is an "added-on" canonical boundary;
a, b, ¢, and d are node coordlnates of cor-
responding regions.,
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methods described in [2, 3] over the whole "expanded" region will be a parametric function
of the unknown thermal flows qi; 5) a set qi is sought“which will satisfy the boundary con-~
ditions of the initial problem at the M nodes of a collocation [4] located on the initial
(noncanonical) countour. We consider a specific example., Assume that we need to solve the
Laplace equation in the region outlined by the continuous' curve in Fig. 1:

VT =0
and that we need to satisfy the set of boundary conditions
‘ : = U (x),
lexb+ L2 k. xe(0,a) ) (2)
or =0, 3)
0% |x=0,5e(0,b) - - :
Lz =0, » (%)
0% |v—a,pe(0,0)
Tlyo.xe00.0) = 0- : (5)

We proceed to solve an auxiliary problem in which we add on a contour, bounding the computa-
tional region, of canonical form (the dashed line in Fig., 1). On the extended part of the
contour (boundary y = d) we introduce the boundary condition
) or
A —— =

| = g (%) '
on the boundary x = 0, y € (0, d) we have condition (3), and on the boundary x = a, y € (0, 4)
we have condition (4). On the boundary y = 0, x € (0,.a) condition (5) stays unchanged.

We replace the function q(x) by the piecewise-smooth representation q(x) = qi, x € ((i —
1)a/M, ic/M), i = 1, 2, vos, M. The solution of the auxiliary problem, obtained by the method
of separation of variables [3], has the form

o

T g, =12, .00, M) = E Ay, sh(,y) cos (%) + Ay, ‘ (6)
, = _
where
. a y
A sm( ou PR M . ,
A!;: =4 ! \j’i T-CGS( 2 — Do \,
amylch(andy = q oM ( ) k}
[ M £
Ay = N, = .
VPR R L

i=1

After this, we reduce the problem to that of finding the set of values q4 which provide
the temperatures U(xi), i 1, 2, eees M, at collocation points distributed along the boundary
of the initial contour yj = b + (c — b)xi/a, xi € (0, a).

Using'the principle of superposition of thermal fields, valid for linear heat-conduction
problems [3], we can write

M
Uy=U(x;) = Eai,-q,-, i=12 ..., M. - (7

=1
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Fig. 2. Distribution of relative error o (%) for a
synthesis of condition (2) along the boundary y =
b + (¢ — b)x/a as a solution of the auxiliary problem
with M subdivisions of the contour boundary.

We can obtain the coefficients ajj appearing in Eq. (7) upon making appropriate analyti-
cal transformations of formula (6) or from the relation

a;;=T (%, Yy =0+ (c—b)x;/a,
‘ (8)
h=G=...=¢_=q ,=...=¢,=0,¢=1).

From the physical point of view the coefficient ajj characterizes the value of the temperature
at the i=-th node of the collocation (xi, yi = b + (c — b)xy/a) per unit thermal flow (¢35 = 1)
introduced at the j=th interval of the added-on contour.

The unknowns qj are found by solving the linear system of algebraic equations (8) by the
method of Gauss [5]. Substitution of qi into the relation (6) yields an approximate analyti-~
cal solution of the initial problem (1)-(5).

A numerical solution of our problem was carried out on the BESM-6 computer for the fol-
lowing values of the parameters: a = 10~ m, b = 0.8¢107* m, ¢ = 10~* m, d = 10~®* m, A = 10
W/ (medeg), x, = 0, X, = 2010~° m, x5 = 4¢10™° m, x, = 6°107> m, x5 = 810> m, x¢ = 10 2 m,
M=6,U1=U2=U3=U5=U5=U5=200°C.

Since the solution obtained satisfies the Laplace equation (1) exactly in the computa-
tional region and satisfies the boundary conditions (3)-(5) on the boundaries (x = 0, y € (0,
b), x=a, y € (0, ¢), y=0, x € (0, @)), the maximum relative error in the computed temper-
ature at an arbitrary point of the region does not exceed the relative error of the synthesis
of condition (2) on the boundary y = b .+ (c — b)x/a, x € (0, a). Figure 2 shows the distribu-
tion of the relative error in the synthesis of the boundary condition (2) of the initial
problem (1)-(5) by means of the flows qi, 1 = 1, 2, «v.y, 6. It is evident from the figure
that the maximum relative error in the computed temperature field is at most 1.2%. Naturally,
an increase in the number of collocation nodes increases the accuracy of the solution. Thus,
when M = 10 the relative error does not exceed 0.47%; moreover, the time to calculate the tem—
perature at 400 points amounts to around 20 sec. Calculation of this problem by a grid method
using a KSI program on the BESM-6 computer requires a machine time two orders of magnitude
greater to achieve the same degree of accuracy.

NOTATION

A, thermal conductivity coefficient; n, unit vector in the direction of the exterior
normal to the boundary of the region; T, temperature distribution function; M, number of sub~
divisions of the contour boundary. »

LITERATURE CITED

1. I. E. Zino, Problems of the Theory of Transport Processes [in Russian], Minsk (1977),
PP. 35-43.

2. L. V. Kantorovich and V. N. Krylov, Approximate Methods of Higher Analysis, Interscience,
New York (1958).

3. A. V. Lykov, Theory of Thermal Conductivity [in Russian], Moscow (1967).

1215



4, B, P, Demidovich, I. A, Maron, and E. Z. Shuvalova, Numerical Methods of Analysis [in
Russian], Moscow (1969).

5. D. K. Faddeev and V. N. Faddeva, Computatlonal Methods of Linear Algebra, W. H. Freeman
& Co., San Francisco (1963).

6. V. P. I1'in, Numerical Methods of Solving Electrooptics Problems [in Russian], Novosi~-
birsk (1974).

1216



