
The result of computing the values of the temperature at the points M~(S) of the i-th 
ray with coordinates ri(S) = d i + 0.1s, s = i, 2, ~.., 0 i = ih is presented in Table i. 

The data in Table l~ield a representation of the temperature distribution in the in- 
ternal points of the plate area.i They are obtained upon partitioning the interval (0, ~/4) 
into eight parts (i = 0, i, ..~, 8) with a division spacing of h = ~/32, 

NOTATION 
L~, L2, plate contours; r, 0, dimensionless polar coordinates, r~, g~, m~, a~, ~ = l, 2, 

contour parameters; h(r, @), plate thickness; H, P, given functions; T~, v = i, 2, value of 
the temperature on the L~j contour; T, function of the temperature; ~, heat-conduction coef- 
ficient: T, Kirchhoff variable; ~, ~, known~functions; ~, parameter playing the part of the 
eigennumber; 0, period of the solution of the problem; n, number parts into which the interval 
is divided; h, division spacing; @i, point of division; Yi, an approximate value of the func- 
tion y(@) at the division point; ~, parameter; F(@i) known function; ~k, roots of the char- 
acteristic equation; fi(k), ~,(k), ~2(k), functions of the radius r; ci(k) , Di(k) , constants 
of integration; Ti, a function of the radius r at the i-th ray; Xk, Zk, parameters determined 
from the boundary conditions of the problem; Mi(S) , a point of the i-th ray; and ri(S) , @i, 
coordinates of a point on the i-th ray. 
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APPROXIMATE ANALYTICAL SOLUTION OF LINEAR HEAT-CONDUCTION PROBLEMS 

IN REGIONS WITH NONCANONICAL BOUNDARIES 

I. Vo Baryshnikov and V. A. Datskovskii UDC 536.24.02 

We present a method for solving linear heat-conduction problems in regions bounded 
by a noncanonical contour. The method is based on extending the noncanonical con- 
tour to a contour imbedded in the grid of classical coordinate systems. 

The use of various modifications of the method of partial regions (see, for example, [i]) 
broadens the possibility of analytically solving heat-conduction problems. The main ingredi- 
ent in the application of these methods is the requirement of a canonical contour bounding 
the computational region (it must be formed by the intersection of orthogonal coordinate sur- 
faces of classical coordinate systems [2]). 

In the present paper we offer an approximate analytical solution of linear heat-conduc- 
tion problems in regions hounded by a noncanonical contour. 

In connection with fields described by the Laplace equation, our method for the solution 
of a problem can he represented as follows: i) a contour of complex profile bounding the com- 
putational region is extended to a contour of canonical form; 2) on the extended part of the 
contour a boundary condition of the second kind 

% 0T !s=qls  
i s  i n t r o d u c e d ,  where q(s)  i s  an unknown thermal  f low d i s t r i b u t i o n  f u n c t i o n  on the  "ex tended"  
boundary s; 3 ) t h e  f u n c t i o n  q(s )  may be r e p l a c e d  by a p i e c e w i s e - c o n s t a n t  r e p r e s e n t a t i o n  
q i ,  i= 1,2 , . . . ,M;  4) a s o l u t i o n  o f  a f i e l d  problem c o n s t r u c t e d  by one o f  the  a n a l y t i c a l  

T r a n s l a t e d  from I n z h e n e r n o - F i z i c h e s k i i  Zhurna l ,  Vol.  53, No~ 4, pp. 659-662,  Oc tober ,  
1987. O r i g i n a l  a r t i c l e  submi t t ed  January  8, 1986. 
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Fig. i. Shape of the computational region: 
line i is a boundary of the initial region; 
line 2 is an "added-on" canonical boundary; 
a, b, c, and d are node coordinates of cor- 
responding regions. 

methods described in [2, 3] over the whole "expanded" region will be a parametric function 
of the unknown thermal flows qi; 5) a set qi is sought~which will satisfy the boundary con- 
ditions of the initial problem at the M nodes of a collocation [4] located on the initial 
(noncanonical) countour. We consider a specific example. Assume that we need to solve the 
Laplace equation in the region outlined by the continuous curve in Fig. l: 

v2T -= 0 

and that we need to satisfy the set of boundary conditions 

TIv=b+~ ~ x~c(o a) = U(x), 

OT I = 0 ,  
ox- X=0 bl 

OT I O, 
OX x=a,~e(O c) 

T]v=0 x~(0 a) = O. 

(2) 

(3) 

(4) 

(5) 

We proceed to solve an auxiliary problem in which we add on a contour, bounding the computa- 
tional region, of canonical form (the dashed line in Fig. I). On the extended part of the 
contour (boundary y = d) we introduce the boundary condition 

fi 

on t he  b o u n d a r y  x = 0, y @ (0,  d) we have c o n d i t i o n  ( 3 ) ,  and on t h e  b o u n d a r y  x = a ,  y @ (0,  d) 
we have c o n d i t i o n  ( 4 ) .  On t h e  b o u n d a r y  y = 0, x @ ( 0 ,  a)  c o n d i t i o n  (5) s t a y s  unchanged .  

We r e p l a c e  t he  f u n c t i o n  q(x)  by t h e  p i e c e w i s e - s m o o t h  r e p r e s e n t a t i o n  q ( x )  = q i ,  x @ ( ( i  -- 
l)a/M, it/M), i = i, 2, .o., M. The solution of the auxiliary problem, obtained by the method 
of separation of variables [3], has the form 

o~ 

T(x, !/, qi, i 1, o M) = ~ A1, sh(,:ohy) cos(~ohx)+ Aoy, (6) 
h=l 

where 

A,r 

l 4 sin 

ch ~=t \ 2M 

A o = '  ~ q i ,  cob 
M~, ~'~ a ~ 1  

After this, we reduce the problem to that of finding the set of values qi �9 which provide 
the temperatures U(xi) , i = 1, 2, ..., M, at collocation points distributed along the boundary 
of the initial contour Yi = b + (c -- b)xi/a, x i E (0, a). 

Using �9 the principle of superposition of thermal fields, valid for linear heat-conduction 
problems [3], we can write 

M 

U~=U (x O= X aijq~' i =  1, 2 . . . . .  M. (7) 
i=1 
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Fig. 2. Distribution of relative error o (%) for a 
synthesis of condition (2) along the boundary y = 
b + (c -- b)x/a as a solution of the auxiliary problem 
with M subdivisions of the contour boundary. 

We can obtain the coefficients aij appearing in Eq. (7) upon making appropriate analyti- 
cal transformations of formula (6) or from the relation 

a~j = T (xi ,  Y~ = b + (c - -  b) x i /a ,  
(s) 

q l  = q2 . . . . .  q i - 1  = qi+l  . . . . .  qM = O, q~ = 1). 

From the physical point of view the coefficient aij characterizes the value of the temperature 
at the i-th node of the collocation (xi, Yi = b + (c -- b)xi/a) per unit thermal flow (qj = i) 
introduced at the j-th interval of the added-on contour. 

The unknowns qi are found by solving the linear system of algebraic equations (8) by the 
method of Gauss [5]. Substitution of qi into the relation (6) yields an approximate analyti- 
cal solution of the initial problem (1)-(5). 

A numerical solution of our problem was carried out on the BESM-6 computer for the fol- 
lowing values of the parameters: a = 10 -2 m, b = 0.8-10 -2 m, c = 10 -2 m, d = 10 -2 m, % = i0 
W/(m,deg), x, = 0, x= = 2.10 -s m, x3 = 4"10 -3 m, x~ = 6-10 -3 m, x5 = 8"10 -3 m, x~ = 10 -2 m, 
M = 6, U, = U= = U3 = U~ = U5 = U5 = 200~ 

Since the solution obtained satisfies the Laplace equation (i) exactly in the computa- 
tional region and satisfies the boundary conditions (3)-(5) on the boundaries (x = 0, y 6 (0, 
b), (x = a, y ~ (0, c), y = 0, x 6 (0, a)), the maximum relative error in the computed temper- 
ature at an arbitrary point of the region does not exceed the relative error of the synthesis 
of condition (2) on the boundary y = b + (c -- b)x/a, x 6 (0, a). Figure 2 shows the distribu- 
tion of the relative error in the synthesis of the boundary condition (2) of the initial 
problem (i)-(5) by means of the flows qi, i = i, 2, ..., 6. It is evident from the figure 
that the maximum relative error in the computed temperature field is at most 1.2%. Naturally, 
an increase in the number of collocation nodes increases the accuracy of the solution. Thus, 
when M = I0 the relative error does not exceed 0.4%; moreover, the time to calculate the tem- 
perature at 400 points amounts to around 20 sec. Calculation of this problem by a grid method 
using a KSI program on the BESM-6 computer requires a machine time two orders of magnitude 
greater to achieve the same degree of accuracy. 

NOTATION 

~, thermal conductivity coefficient; n, unit vector in the direction of the exterior 
normal to the boundary of the region; T, temperature distribution function; M, number of sub- 
divisions of the contour boundary. 

le 

2. 

3. 
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